SQUARE ROOTS AND CUBE ROOTS

Square Root: If $x^2 = y$, we say that the square root of y is x and we write, $\sqrt{y} = x$.

Thus, $\sqrt{4} = 2$, $\sqrt{9} = 3$, $\sqrt{196} = 14$.

Cube Root: The cube root of a given number x is the number whose cube is x. We denote the cube root of x by ${}^{3}\sqrt{x}$.

Thus, ${}^{3}\sqrt{8} = {}^{3}\sqrt{2} \ge 2 \ge 2$, ${}^{3}\sqrt{343} = {}^{3}\sqrt{7} \ge 7 \ge 7$ etc. Note: 2. $\sqrt{(x/y)} = \sqrt{x} / \sqrt{y} = (\sqrt{x} / \sqrt{y}) * (\sqrt{y} / \sqrt{y}) = \sqrt{xy} / y$ $1.\sqrt{xy} = \sqrt{x} * \sqrt{y}$

SOLVED EXAMPLES

1 1471369 (1213

47 44

> 313 241

> > 7269 7269 Х

1. Evaluate $\sqrt{6084}$ by factorization method.

Sol.	Method: Express the given number as the product of prime factors.	2	6084
	Now, take the produc <mark>t of</mark> these prime factors choosing one out of	2	3042
	every pair of the same primes. This product gives the square root	3	1521
	of the given number.	3	507
	Thus, resolving 6084 into prime factors, we get:	13	169
	$6084 = 2^2 \times 3^2 \times 13^2$		13
	$\therefore \sqrt{6084} = (2 \times 3 \times 13) = 78.$		

2. Find the square root of 1471369.

Sol.	Explanation: In the given number, mark off the digits	1
	in pairs starting from the unit's digit. Each pair and	
	the remaining one digit is called a period.	22
	Now, $1^2 = 1$. On subtracting, we get 0 as remainder.	
	Now, bring down the next period <i>i.e.</i> , 47.	241
	Now, trial divisor is $1 \ge 2$ and trial dividend is 47.	
	So, we take 22 as divisor and put 2 as quotient.	2423
	The remainder is 3.	
	Next, we bring down the next period which is 13.	
	Now, trial divisor is $12 \times 2 = 24$ and trial dividend is	
	313. So, we take 241 as dividend and 1 as quotient.	
	The remainder is 72.	
	Bring down the next period <i>i.e.</i> , 69.	
	Now, the trial divisor is $121 \times 2 = 242$ and the trial	
	dividend is 7269. So, we take 3as quotient and 2423	
	as divisor. The remainder is then zero.	
	Hence, $\sqrt{1471369} = 1213$.	

3. Evaluate: $\sqrt{248 + \sqrt{51 + \sqrt{169}}}$.

Sol. Given expression = $\sqrt{248 + \sqrt{51 + 13}} = \sqrt{248 + \sqrt{64}} = \sqrt{248 + 8} = \sqrt{256} = 16$.

4. If $a * b * c = \sqrt{(a + 2)(b + 3)/(c + 1)}$, find the value of 6 * 15 * 3. Sol. $6 * 15 * 3 = \sqrt{(6 + 2)(15 + 3)}/(3 + 1) = \sqrt{8 * 18}/4 = \sqrt{144}/4 = 12/4 = 3$.

5. Find the value of $\sqrt{25/16}$.

Sol. $\sqrt{25} / 16 = \sqrt{25} / \sqrt{16} = 5 / 4$

6. What is the square root of 0.0009?

Sol. $\sqrt{0.0009} = \sqrt{9} / 1000 = 3 / 100 = 0.03$.

7. Evaluate √175.2976.

8. What will come in place of question mark in each of the following questions?

(i) $\sqrt{32.4/?} = 2$ (ii) $\sqrt{86.49} + \sqrt{5 + (?)^2} = 12.3$.

Sol. (i) Let
$$\sqrt{32.4} / x = 2$$
. Then, $32.4 / x = 4 \le 4x = 32.4 \le x = 8.1$.

(ii) Let
$$\sqrt{86.49} + \sqrt{5 + x^2} = 12.3$$
.
Then, $9.3 + \sqrt{5 + x^2} = 12.3 <=> \sqrt{5 + x^2} = 12.3 - 9.3 = 3$
 $<=> 5 + x^2 = 9 <=> x^2 = 9 - 5 = 4 <=> x = \sqrt{4} = 2$.

.9. Find the value of $\sqrt{0.289 / 0.00121}$.

Sol. $\sqrt{0.289 / 0.00121} = \sqrt{0.28900 / 0.00121} = \sqrt{28900 / 121} = 170 / 11.$

Ex.10. If $\sqrt{1 + (x / 144)} = 13 / 12$, the find the value of x.

Sol.
$$\sqrt{1 + (x / 144)} = 13 / 12 \Rightarrow (1 + (x / 144)) = (13 / 12)^2 = 169 / 144$$

 $\Rightarrow x / 144 = (169 / 144) - 1$
 $\Rightarrow x / 144 = 25/144 \Rightarrow x = 25.$

11. Find the value of $\sqrt{3}$ up to three places of decimal. Sol.

12. If $\sqrt{3} = 1.732$, find the value of $\sqrt{192} - \frac{1}{\sqrt{48}} \sqrt{48} - \sqrt{75}$ correct to 3 places

of decimal.

(S.S.C. 2004)

Sol.
$$\sqrt{192} - (1/2)\sqrt{48} - \sqrt{75} = \sqrt{64 * 3} - (1/2)\sqrt{16 * 3} - \sqrt{25 * 3}$$

= $8\sqrt{3} - (1/2) * 4\sqrt{3} - 5\sqrt{3}$
= $3\sqrt{3} - 2\sqrt{3} = \sqrt{3} = 1.732$

13. Evaluate: $\sqrt{(9.5 * 0.0085 * 18.9) / (0.0017 * 1.9 * 0.021)}$

Sol. Given exp. = $\sqrt{(9.5 * 0.0085 * 18.9) / (0.0017 * 1.9 * 0.021)}$

Now, since the sum of decimal places in the numerator and denominator under the radical sign is the same, we remove the decimal.

$$\therefore \qquad \text{Given exp} = \sqrt{(95 * 85 * 18900) / (17 * 19 * 21)} = \sqrt{5 * 5 * 900} = 5 * 30 = 150.$$

14. Simplify: $\sqrt{\left[\left(\frac{12.1}{2}\right)^2 - (8.1)^2\right] / \left[(0.25)^2 + (0.25)(19.95)\right]}$

Sol. Given exp. =
$$\sqrt{[(12.1 + 8.1)(12.1 - 8.1)]/[(0.25)(0.25 + 19.95)]}$$

 $=\sqrt{(20.2 * 4) / (0.25 * 20.2)} = \sqrt{4 / 0.25} = \sqrt{400 / 25} = \sqrt{16} = 4.$ **15.** If $x = 1 + \sqrt{2}$ and $y = 1 - \sqrt{2}$, find the value of $(x^2 + y^2)$. **Sol.** $x^2 + y^2 = (1 + \sqrt{2})^2 + (1 - \sqrt{2})^2 = 2[(1)^2 + (\sqrt{2})^2] = 2 * 3 = 6.$

Ex. 16. *Evaluate:* $\sqrt{0.9}$ up to 3 places of decimal. Sol.

17. If $\sqrt{15} = 3.88$, find the value of $\sqrt{(5/3)}$. Sol. $\sqrt{(5/3)} = \sqrt{(5 * 3) / (3 * 3)} = \sqrt{15} / 3 = 3.88 / 3 = 1.2933.... = 1.293$.

18. Find the least square number which is exactly divisible by 10,12,15 and 18. Sol. L.C.M. of 10, 12, 15, 18 = 180. Now, $180 = 2 * 2 * 3 * 3 * 5 = 2^2 * 3^2 * 5$.

To make it a perfect square, it must be multiplied by 5. \therefore Required number = $(2^2 * 3^2 * 5^2) = 900$.

19. Find the greatest number of five digits which is a perfect square.

20. Find the smallest number that must be added to 1780 to make it a perfect square.

Sol.

$$\begin{array}{c|cccc} 4 & 1780 (42) \\ 16 \\ 82 & 180 \\ 164 \\ \hline 16 \\ \hline \end{array}$$

:. Number to be added = $(43)^2 - 1780 = 1849 - 1780 = 69$.

21. $\sqrt{2} = 1.4142$, find the value of $\sqrt{2} / (2 + \sqrt{2})$. Sol. $\sqrt{2} / (2 + \sqrt{2}) = \sqrt{2} / (2 + \sqrt{2}) * (2 - \sqrt{2}) / (2 - \sqrt{2}) = (2\sqrt{2} - 2) / (4 - 2)$ $= 2(\sqrt{2} - 1) / 2 = \sqrt{2} - 1 = 0.4142.$

22. If $x = (\sqrt{5} + \sqrt{3}) / (\sqrt{5} - \sqrt{3})$ and $y = (\sqrt{5} - \sqrt{3}) / (\sqrt{5} + \sqrt{3})$, find the value of $(x^2 + y^2)$. Sol. $x = [(\sqrt{5} + \sqrt{3}) / (\sqrt{5} - \sqrt{3})] * [(\sqrt{5} + \sqrt{3}) / (\sqrt{5} + \sqrt{3})] = (\sqrt{5} + \sqrt{3})^2 / (5 - 3)$ $= (5 + 3 + 2\sqrt{15}) / 2 = 4 + \sqrt{15}.$ $y = [(\sqrt{5} - \sqrt{3}) / (\sqrt{5} + \sqrt{3})] * [(\sqrt{5} - \sqrt{3}) / (\sqrt{5} - \sqrt{3})] = (\sqrt{5} - \sqrt{3})^2 / (5 - 3)$ $= (5 + 3 - 2\sqrt{15}) / 2 = 4 - \sqrt{15}.$ $\therefore \quad x^2 + y^2 = (4 + \sqrt{15})^2 + (4 - \sqrt{15})^2 = 2[(4)^2 + (\sqrt{15})^2] = 2 * 31 = 62.$

23. Find the cube root of 2744.

Sol.	Method: Resolve the given number as the product	2	2744
	of prime factors and take the product of prime	2	1372
	factors, choosing one out of three of the same	2	686
	prime factors. Resolving 2744 as the product of	7	343
	prime factors, we get:	7	49
			7
	$2744 = 2^3 \times 7^3$.		
	$\therefore \sqrt[3]{2744} = 2 \times 7 = 14.$		

24. By what least number 4320 be multiplied to obtain a number which is a perfect cube? Sol. Clearly, $4320 = 2^3 * 3^3 * 2^2 * 5$.

To make it a perfect cube, it must be multiplied by $2 * 5^2$ i.e, 50.